Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Arthritis Res Ther ; 26(1): 73, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509602

RESUMO

BACKGROUND: Pain from osteoarthritis (OA) is one of the top causes of disability worldwide, but effective treatment is lacking. Nociceptive factors are released by activated synovial macrophages in OA, but depletion of synovial macrophages paradoxically worsens inflammation and tissue damage in previous studies. Rather than depleting macrophages, we hypothesized that inhibiting macrophage activation may improve pain without increasing tissue damage. We aimed to identify key mechanisms mediating synovial macrophage activation and test the role of STAT signaling in macrophages on pain outcomes in experimental knee OA. METHODS: We induced experimental knee OA in rats via knee destabilization surgery, and performed RNA sequencing analysis on sorted synovial tissue macrophages to identify macrophage activation mechanisms. Liposomes laden with STAT1 or STAT6 inhibitors, vehicle (control), or clodronate (depletion control) were delivered selectively to synovial macrophages via serial intra-articular injections up to 12 weeks after OA induction. Treatment effects on knee and hindpaw mechanical pain sensitivity were measured during OA development, along with synovitis, cartilage damage, and synovial macrophage infiltration using histopathology and immunofluorescence. Lastly, crosstalk between drug-treated synovial tissue and articular chondrocytes was assessed in co-culture. RESULTS: The majority of pathways identified by transcriptomic analyses in OA synovial macrophages involve STAT signaling. As expected, macrophage depletion reduced pain, but increased synovial tissue fibrosis and vascularization. In contrast, STAT6 inhibition in macrophages led to marked, sustained improvements in mechanical pain sensitivity and synovial inflammation without worsening synovial or cartilage pathology. During co-culture, STAT6 inhibitor-treated synovial tissue had minimal effects on healthy chondrocyte gene expression, whereas STAT1 inhibitor-treated synovium induced changes in numerous cartilage turnover-related genes. CONCLUSION: These results suggest that STAT signaling is a major mediator of synovial macrophage activation in experimental knee OA. STAT6 may be a key mechanism mediating the release of nociceptive factors from macrophages and the development of mechanical pain sensitivity. Whereas therapeutic depletion of macrophages paradoxically increases inflammation and fibrosis, blocking STAT6-mediated synovial macrophage activation may be a novel strategy for OA-pain management without accelerating tissue damage.


Assuntos
Osteoartrite do Joelho , Fator de Transcrição STAT6 , Animais , Ratos , Fibrose , Inflamação/patologia , Ativação de Macrófagos , Osteoartrite do Joelho/patologia , Dor/patologia , Membrana Sinovial/patologia , Fator de Transcrição STAT6/metabolismo
2.
Infect Immun ; 92(3): e0053923, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38299827

RESUMO

The obligate intracellular bacterium Chlamydia has a unique developmental cycle that alternates between two contrasting cell types. With a hardy envelope and highly condensed genome, the small elementary body (EB) maintains limited metabolic activities yet survives in extracellular environments and is infectious. After entering host cells, EBs differentiate into larger and proliferating reticulate bodies (RBs). Progeny EBs are derived from RBs in late developmental stages and eventually exit host cells. How expression of the chlamydial genome consisting of nearly 1,000 genes governs the chlamydial developmental cycle is unclear. A previous microarray study identified only 29 Chlamydia trachomatis immediate early genes, defined as genes with increased expression during the first hour postinoculation in cultured cells. In this study, we performed more sensitive RNA sequencing (RNA-Seq) analysis for C. trachomatis cultures with high multiplicities of infection. Remarkably, we observed well over 700 C. trachomatis genes that underwent 2- to 900-fold activation within 1 hour postinoculation. Quantitative reverse transcription real-time PCR analysis was further used to validate the activated expression of a large subset of the genes identified by RNA-Seq. Importantly, our results demonstrate that the immediate early transcriptome is over 20 times more extensive than previously realized. Gene ontology analysis indicates that the activated expression spans all functional categories. We conclude that over 70% of C. trachomatis genes are activated in EBs almost immediately upon entry into host cells, thus implicating their importance in initiating rapid differentiation into RBs and establishing an intracellular niche conducive with chlamydial development and growth.


Assuntos
Infecções por Chlamydia , Chlamydia trachomatis , Humanos , Células Cultivadas , Sequência de Bases , Transcriptoma , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Chlamydia/genética
3.
bioRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38328207

RESUMO

This study aimed to investigate the time course of gene expression changes during the progression of persistent painful neuropathy caused by paclitaxel (PTX) in male and female mouse hind paws and dorsal root ganglia (DRG). Bulk RNA-seq was used to investigate the gene expression changes in the paw and DRG collected at 1, 16, and 31 days post-PTX. At these time points, differentially expressed DEGs were predominantly related to reduction or increase in epithelial, skin, bone, and muscle development and to angiogenesis, myelination, axonogenesis, and neurogenesis. These processes were accompanied by regulation of DEGs related to cytoskeleton, extracellular matrix organization and cellular energy production. This gene plasticity during persistent painful neuropathy progression likely represents biological processes linked to tissue regeneration and degeneration. Unlike regeneration/degeneration, gene plasticity related to immune processes was minimal at 1-31 days post-PTX. It was also noted that despite similarities in biological processes and pain chronicity in males and females, specific DEGs showed dramatic sex-dependency. The main conclusions of this study are that gene expression plasticity in paws and DRG during PTX neuropathy progression relates to tissue regeneration and degeneration, minimally affects the immune system processes, and is heavily sex-dependent at the individual gene level.

4.
Cell Biosci ; 14(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167156

RESUMO

BACKGROUND AND AIMS: Previously, we found that FK506 binding protein 51 (Fkbp51) knockout (KO) mice resist high fat diet-induced fatty liver and alcohol-induced liver injury. The aim of this research is to identify the mechanism of Fkbp51 in liver injury. METHODS: Carbon tetrachloride (CCl4)-induced liver injury was compared between Fkbp51 KO and wild type (WT) mice. Step-wise and in-depth analyses were applied, including liver histology, biochemistry, RNA-Seq, mitochondrial respiration, electron microscopy, and molecular assessments. The selective FKBP51 inhibitor (SAFit2) was tested as a potential treatment to ameliorate liver injury. RESULTS: Fkbp51 knockout mice exhibited protection against liver injury, as evidenced by liver histology, reduced fibrosis-associated markers and lower serum liver enzyme levels. RNA-seq identified differentially expressed genes and involved pathways, such as fibrogenesis, inflammation, mitochondria, and oxidative metabolism pathways and predicted the interaction of FKBP51, Parkin, and HSP90. Cellular studies supported co-localization of Parkin and FKBP51 in the mitochondrial network, and Parkin was shown to be expressed higher in the liver of KO mice at baseline and after liver injury relative to WT. Further functional analysis identified that KO mice exhibited increased ATP production and enhanced mitochondrial respiration. KO mice have increased mitochondrial size, increased autophagy/mitophagy and mitochondrial-derived vesicles (MDV), and reduced reactive oxygen species (ROS) production, which supports enhancement of mitochondrial quality control (MQC). Application of SAFit2, an FKBP51 inhibitor, reduced the effects of CCl4-induced liver injury and was associated with increased Parkin, pAKT, and ATP production. CONCLUSIONS: Downregulation of FKBP51 represents a promising therapeutic target for liver disease treatment.

5.
mBio ; 15(1): e0203623, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38112466

RESUMO

IMPORTANCE: Hallmarks of the developmental cycle of the obligate intracellular pathogenic bacterium Chlamydia are the primary differentiation of the infectious elementary body (EB) into the proliferative reticulate body (RB) and the secondary differentiation of RBs back into EBs. The mechanisms regulating these transitions remain unclear. In this report, we developed an effective novel strategy termed dependence on plasmid-mediated expression (DOPE) that allows for the knockdown of essential genes in Chlamydia. We demonstrate that GrgA, a Chlamydia-specific transcription factor, is essential for the secondary differentiation and optimal growth of RBs. We also show that GrgA, a chromosome-encoded regulatory protein, controls the maintenance of the chlamydial virulence plasmid. Transcriptomic analysis further indicates that GrgA functions as a critical regulator of all three sigma factors that recognize different promoter sets at developmental stages. The DOPE strategy outlined here should provide a valuable tool for future studies examining chlamydial growth, development, and pathogenicity.


Assuntos
Infecções por Chlamydia , Chlamydia trachomatis , Humanos , Chlamydia trachomatis/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , Fator sigma/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
Sci Rep ; 13(1): 22057, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086903

RESUMO

Gene plasticity during myogenous temporomandibular disorder (TMDM) development is largely unknown. TMDM could be modeled by intramuscular inflammation or tissue damage. To model inflammation induced TMDM we injected complete Freund's adjuvant (CFA) into masseter muscle (MM). To model tissue damage induced TMDM we injected extracellular matrix degrading collagenase type 2 (Col). CFA and Col produced distinct myalgia development trajectories. We performed bulk RNA-seq of MM to generate gene plasticity time course. CFA initiated TMDM (1d post-injection) was mainly linked to chemo-tacticity of monocytes and neutrophils. At CFA-induced hypersensitivity post-resolution (5d post-injection), tissue repair processes were pronounced, while inflammation was absent. Col (0.2U) produced acute hypersensitivity linked to tissue repair without inflammatory processes. Col (10U) generated prolonged hypersensitivity with inflammatory processes dominating initiation phase (1d). Pre-resolution phase (6d) was accompanied with acceleration of expressions for tissue repair and pro-inflammatory genes. Flow cytometry showed that immune processes in MM was associated with accumulations of macrophages, natural killer, dendritic and T-cells, further confirming our RNA-seq findings. Altogether, CFA and Col treatments induced different immune processes in MM. Importantly, TMDM resolution was preceded with muscle cell and extracellular matrix repairs, an elevation in immune system gene expressions and distinct immune cell accumulations in MM.


Assuntos
Músculo Masseter , Mialgia , Ratos , Animais , Humanos , Ratos Sprague-Dawley , Inflamação , Adjuvante de Freund/efeitos adversos
7.
iScience ; 26(11): 108171, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37915590

RESUMO

Patient-derived xenografts (PDX) remain valuable models for understanding the biology and for developing novel therapeutics. To expand current PDX models of childhood leukemia, we have developed new PDX models from Hispanic patients, a subgroup with a poorer overall outcome. Of 117 primary leukemia samples obtained, successful engraftment and serial passage in mice were achieved in 82 samples (70%). Hispanic patient samples engrafted at a rate (51/73, 70%) that was similar to non-Hispanic patient samples (31/45, 70%). With a new algorithm to remove mouse contamination in multi-omics datasets including methylation data, we found PDX models faithfully reflected somatic mutations, copy-number alterations, RNA expression, gene fusions, whole-genome methylation patterns, and immunophenotypes found in primary tumor (PT) samples in the first 50 reported here. This cohort of characterized PDX childhood leukemias represents a valuable resource in that germline DNA sequencing has allowed the unambiguous determination of somatic mutations in both PT and PDX.

8.
Nat Commun ; 14(1): 7600, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37990009

RESUMO

Subcutaneous patient-derived xenografts (PDXs) are an important tool for childhood cancer research. Here, we describe a resource of 68 early passage PDXs established from 65 pediatric solid tumor patients. Through genomic profiling of paired PDXs and patient tumors (PTs), we observe low mutational similarity in about 30% of the PT/PDX pairs. Clonal analysis in these pairs show an aggressive PT minor subclone seeds the major clone in the PDX. We show evidence that this subclone is more immunogenic and is likely suppressed by immune responses in the PT. These results suggest interplay between intratumoral heterogeneity and antitumor immunity may underlie the genetic disparity between PTs and PDXs. We further show that PDXs generally recapitulate PTs in copy number and transcriptomic profiles. Finally, we report a gene fusion LRPAP1-PDGFRA. In summary, we report a childhood cancer PDX resource and our study highlights the role of immune constraints on tumor evolution.


Assuntos
Neoplasias , Animais , Criança , Humanos , Xenoenxertos , Neoplasias/genética , Neoplasias/patologia , Transcriptoma/genética , Mutação , Modelos Animais de Doenças , Genômica/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Front Pain Res (Lausanne) ; 4: 1274811, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028432

RESUMO

Non-neuronal cells constitute 90%-95% of sensory ganglia. These cells, especially glial and immune cells, play critical roles in the modulation of sensory neurons. This study aimed to identify, profile, and summarize the types of trigeminal ganglion (TG) non-neuronal cells in naïve male mice using published and our own data generated by single-cell RNA sequencing, flow cytometry, and immunohistochemistry. TG has five types of non-neuronal cells, namely, glial, fibroblasts, smooth muscle, endothelial, and immune cells. There is an agreement among publications for glial, fibroblasts, smooth muscle, and endothelial cells. Based on gene profiles, glial cells were classified as myelinated and non-myelinated Schwann cells and satellite glial cells. Mpz has dominant expression in Schwann cells, and Fabp7 is specific for SCG. Two types of Col1a2+ fibroblasts located throughout TG were distinguished. TG smooth muscle and endothelial cells in the blood vessels were detected using well-defined markers. Our study reported three types of macrophages (Mph) and four types of neutrophils (Neu) in TG. Mph were located in the neuronal bodies and nerve fibers and were sub-grouped by unique transcriptomic profiles with Ccr2, Cx3cr1, and Iba1 as markers. A comparison of databases showed that type 1 Mph is similar to choroid plexus-low (CPlo) border-associated Mph (BAMs). Type 2 Mph has the highest prediction score with CPhi BAMs, while type 3 Mph is distinct. S100a8+ Neu were located in the dura surrounding TG and were sub-grouped by clustering and expressions of Csf3r, Ly6G, Ngp, Elane, and Mpo. Integrative analysis of published datasets indicated that Neu-1, Neu-2, and Neu-3 are similar to the brain Neu-1 group, while Neu-4 has a resemblance to the monocyte-derived cells. Overall, the generated and summarized datasets on non-neuronal TG cells showed a unique composition of myeloid cell types in TG and could provide essential and fundamental information for studies on cell plasticity, interactomic networks between neurons and non-neuronal cells, and function during a variety of pain conditions in the head and neck regions.

10.
Front Health Serv ; 3: 1198195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927443

RESUMO

Artificial intelligence, machine learning, and digital health innovations have tremendous potential to advance patient-centred, data-driven mental healthcare. To enable the clinical application of such innovations, the Krembil Centre for Neuroinformatics at the Centre for Addiction and Mental Health, Canada's largest mental health hospital, embarked on a journey to co-create a digital learning health system called the BrainHealth Databank (BHDB). Working with clinicians, scientists, and administrators alongside patients, families, and persons with lived experience (PFLE), this hospital-wide team has adopted a systems approach that integrates clinical and research data and practices to improve care and accelerate research. PFLE engagement was intentional and initiated at the conception stage of the BHDB to help ensure the initiative would achieve its goal of understanding the community's needs while improving patient care and experience. The BHDB team implemented an evolving, dynamic strategy to support continuous and active PFLE engagement in all aspects of the BHDB that has and will continue to impact patients and families directly. We describe PFLE consultation, co-design, and partnership in various BHDB activities and projects. In all three examples, we discuss the factors contributing to successful PFLE engagement, share lessons learned, and highlight areas for growth and improvement. By sharing how the BHDB navigated and fostered PFLE engagement, we hope to motivate and inspire the health informatics community to collectively chart their paths in PFLE engagement to support advancements in digital health and artificial intelligence.

11.
bioRxiv ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37873441

RESUMO

Single cell spatial-omics data visualization plays a pivotal role in unraveling the intricate spatial organization and heterogeneity of cellular systems. Although various software tools and packages have been developed for this purpose, challenges persist in terms of user-friendly accessibility, data integration, and interactivity. In this study, we introduce Spatial-Live, a lightweight and versatile viewer tool designed for flexible single-cell spatial-omics data visualization. Spatial-Live overcomes the fundamental limitations of two-dimensional (2D) orthographic modes by employing a layer-stacking strategy, enabling efficient rendering of diverse data types with interactive features, and enhancing visualization with richer information in a unified three-dimensional (3D) space.

12.
Mol Oncol ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37853941

RESUMO

Endometrial carcinoma (ECa) is the fourth most common cancer among women. The oncogene PELP1 is frequently overexpressed in a variety of cancers, including ECa. We recently generated SMIP34, a small-molecule inhibitor of PELP1 that suppresses PELP1 oncogenic signaling. In this study, we assessed the effectiveness of SMIP34 in treating ECa. Treatment of established and primary patient-derived ECa cells with SMIP34 resulted in a significant reduction of cell viability, colony formation ability, and induction of apoptosis. RNA-seq analyses showed that SMIP34-regulated genes were negatively correlated with ribosome biogenesis and eukaryotic translation pathways. Mechanistic studies showed that the Rix complex, which is essential for ribosomal biogenesis, is disrupted upon SMIP34 binding to PELP1. Biochemical assays confirmed that SMIP34 reduced ribosomal biogenesis and new protein synthesis. Further, SMIP34 enhanced the efficacy of mTOR inhibitors in reducing viability of ECa cells. SMIP34 is also effective in reducing cell viability in ECa organoids in vitro and explants ex vivo. Importantly, SMIP34 treatment resulted in a significant reduction of the growth of ECa xenografts. Collectively, these findings underscore the potential of SMIP34 in treating ECa.

13.
Nat Commun ; 14(1): 6569, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848444

RESUMO

While macrophage phagocytosis is an immune defense mechanism against invading cellular organisms, cancer cells expressing the CD47 ligand send forward signals to repel this engulfment. Here we report that the reverse signaling using CD47 as a receptor additionally enhances a pro-survival function of prostate cancer cells under phagocytic attack. Although low CD47-expressing cancer cells still allow phagocytosis, the reverse signaling delays the process, leading to incomplete digestion of the entrapped cells and subsequent tumor hybrid cell (THC) formation. Viable THCs acquire c-Myc from parental cancer cells to upregulate both M1- and M2-like macrophage polarization genes. Consequently, THCs imitating dual macrophage features can confound immunosurveillance, gaining survival advantage in the host. Furthermore, these cells intrinsically express low levels of androgen receptor and its targets, resembling an adenocarcinoma-immune subtype of metastatic castration-resistant prostate cancer. Therefore, phagocytosis-generated THCs may represent a potential target for treating the disease.


Assuntos
Antígeno CD47 , Macrófagos , Metástase Neoplásica , Fagocitose , Proteínas Proto-Oncogênicas c-myc , Evasão Tumoral , Humanos , Masculino , Proteínas de Transporte , Antígeno CD47/metabolismo , Macrófagos/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/imunologia , Transdução de Sinais , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Metástase Neoplásica/genética , Metástase Neoplásica/imunologia , Células Tumorais Cultivadas
14.
Cells ; 12(18)2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37759517

RESUMO

Tuberculosis (TB) and Human Immunodeficiency Virus (HIV) co-infection continues to pose a significant healthcare burden. HIV co-infection during TB predisposes the host to the reactivation of latent TB infection (LTBI), worsening disease conditions and mortality. There is a lack of biomarkers of LTBI reactivation and/or immune-related transcriptional signatures to distinguish active TB from LTBI and predict TB reactivation upon HIV co-infection. Characterizing individual cells using next-generation sequencing-based technologies has facilitated novel biological discoveries about infectious diseases, including TB and HIV pathogenesis. Compared to the more conventional sequencing techniques that provide a bulk assessment, single-cell RNA sequencing (scRNA-seq) can reveal complex and new cell types and identify more high-resolution cellular heterogeneity. This review will summarize the progress made in defining the immune atlas of TB and HIV infections using scRNA-seq, including host-pathogen interactions, heterogeneity in HIV pathogenesis, and the animal models employed to model disease. This review will also address the tools needed to bridge the gap between disease outcomes in single infection vs. co-infection. Finally, it will elaborate on the translational benefits of single-cell sequencing in TB/HIV diagnosis in humans.


Assuntos
Coinfecção , Infecções por HIV , Animais , Humanos , Infecções por HIV/complicações , Infecções por HIV/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala
15.
Cancers (Basel) ; 15(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686559

RESUMO

African-American (AA)/Black hepatocellular carcinoma (HCC) patients have increased incidence and decreased survival rates compared to non-Hispanic (White) patients, the underlying molecular mechanism of which is not clear. Analysis of existing RNA-sequencing (RNA-seq) data in The Cancer Genome Atlas (TCGA) and in-house RNA-sequencing of 14 White and 18 AA/Black HCC patients revealed statistically significant activation of type I interferon (IFN-I) signaling pathway in AA/Black patients. A four-gene signature of IFN-stimulated genes (ISGs) showed increased expression in AA/Black HCC tumors versus White. HCC is a disease of chronic inflammation, and IFN-Is function as pro-inflammatory cytokines. We tested efficacy of ginger extract (GE), a dietary compound known for anti-inflammatory properties, on HCC cell lines derived from White (HepG2), AA/Black (Hep3B and O/20) and Asian (HuH-7) patients. GE exhibited a significantly lower IC50 on Hep3B and O/20 cells than on HepG2 and HuH-7 cells. The GE treatment inhibited the activation of downstream mediators of IFN-I signaling pathways and expression of ISGs in all four HCC cells. Our data suggest that ginger can potentially attenuate IFN-I-mediated signaling pathways in HCC, and cells from AA/Black HCC patients may be more sensitive to ginger. AA/Black HCC patients might benefit from a holistic diet containing ginger.

16.
Cancer Lett ; 575: 216383, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37714256

RESUMO

Ovarian cancer (OCa) is the most lethal gynecologic cancer. Emerging data indicates that estrogen receptor beta (ERß) functions as a tumor suppressor in OCa. Lysine-specific histone demethylase 1A (KDM1A) is an epigenetic modifier that acts as a coregulator for steroid hormone receptors. However, it remain unknown if KDM1A interacts with ERß and regulates its expression/functions in OCa. Analysis of TCGA data sets indicated KDM1A and ERß expression showed an inverse relationship in OCa. Knockout (KO), knockdown (KD), or inhibition of KDM1A increased ERß isoform 1 expression in established and patient-derived OCa cells. Further, KDM1A interacts with and functions as a corepressor of ERß, and its inhibition enhances ERß target gene expression via alterations of histone methylation marks at their promoters. Importantly, KDM1A-KO or -KD enhanced the efficacy of ERß agonist LY500307, and the combination of KDM1A inhibitor (KDM1Ai) NCD38 with ERß agonist synergistically reduced the cell viability, colony formation, and invasion of OCa cells. RNA-seq and DIA mass spectrometry analyses showed that KDM1A-KO resulted in enhanced ERß signaling and that genes altered by KDM1A-KO and ERß agonist were related to apoptosis, cell cycle, and EMT. Moreover, combination treatment significantly reduced the tumor growth in OCa orthotopic, syngeneic, and patient-derived xenograft models and proliferation in patient-derived explant models. Our results demonstrate that KDM1A regulates ERß expression/functions, and its inhibition improves ERß mediated tumor suppression. Overall, our findings suggest that KDM1Ai and ERß agonist combination therapy is a promising strategy for OCa.


Assuntos
Receptor beta de Estrogênio , Neoplasias Ovarianas , Humanos , Feminino , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Linhagem Celular Tumoral , Genes Supressores de Tumor , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Estrogênios , Histona Desmetilases
17.
PLoS One ; 18(9): e0291724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733728

RESUMO

Dental pain from apical periodontitis is an infection induced-orofacial pain condition that presents with diversity in pain phenotypes among patients. While 60% of patients with a full-blown disease present with the hallmark symptom of mechanical allodynia, nearly 40% of patients experience no pain. Furthermore, a sexual dichotomy exists, with females exhibiting lower mechanical thresholds under basal and diseased states. Finally, the prevalence of post-treatment pain refractory to commonly used analgesics ranges from 7-19% (∼2 million patients), which warrants a thorough investigation of the cellular changes occurring in different patient cohorts. We, therefore, conducted a transcriptomic assessment of periapical biopsies (peripheral diseased tissue) from patients with persistent apical periodontitis. Surgical biopsies from symptomatic male (SM), asymptomatic male (AM), symptomatic female (SF), and asymptomatic female (AF) patients were collected and processed for bulk RNA sequencing. Using strict selection criteria, our study found several unique differentially regulated genes (DEGs) between symptomatic and asymptomatic patients, as well as novel candidate genes between sexes within the same pain group. Specifically, we found the role of cells of the innate and adaptive immune system in mediating nociception in symptomatic patients and the role of genes involved in tissue homeostasis in potentially inhibiting nociception in asymptomatic patients. Furthermore, sex-related differences appear to be tightly regulated by macrophage activity, its secretome, and/or migration. Collectively, we present, for the first time, a comprehensive assessment of peripherally diseased human tissue after a microbial insult and shed important insights into the regulation of the trigeminal system in female and male patients.


Assuntos
Hiperalgesia , Transcriptoma , Humanos , Feminino , Masculino , Perfilação da Expressão Gênica , Dor Facial , Biópsia
18.
Sci Rep ; 13(1): 13117, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573456

RESUMO

Mechanisms of sex-dependent orofacial pain are widely understudied. A significant gap in knowledge exists about comprehensive regulation of tissue-specific trigeminal sensory neurons in diseased state of both sexes. Using RNA sequencing of FACS sorted retro-labeled sensory neurons innervating tongue tissue, we determined changes in transcriptomic profiles in males and female mice under naïve as well as tongue-tumor bearing conditions Our data revealed the following interesting findings: (1) FACS sorting obtained higher number of neurons from female trigeminal ganglia (TG) compared to males; (2) Naïve female neurons innervating the tongue expressed immune cell markers such as Csf1R, C1qa and others, that weren't expressed in males. This was validated by Immunohistochemistry. (3) Accordingly, immune cell markers such as Csf1 exclusively sensitized TRPV1 responses in female TG neurons. (4) Male neurons were more tightly regulated than female neurons upon tumor growth and very few differentially expressed genes (DEGs) overlapped between the sexes, (5) Male DEGs contained higher number of transcription factors whereas female DEGs contained higher number of enzymes, cytokines and chemokines. Collectively, this is the first study to characterize the effect of sex as well as of tongue-tumor on global gene expression, pathways and molecular function of tongue-innervating sensory neurons.


Assuntos
Células Receptoras Sensoriais , Língua , Camundongos , Masculino , Feminino , Animais , Língua/metabolismo , Gânglio Trigeminal/metabolismo , Caracteres Sexuais , Biomarcadores/metabolismo , Genômica
19.
bioRxiv ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37645736

RESUMO

Non-neuronal cells constitute 90-95% of sensory ganglia. These cells play critical roles in modulation of nociceptive signal transmissions by sensory neurons. Accordingly, the aim of this review-study was to identify, profile and summarize TG non-neuronal cell types in naïve male mice using published and our own data generated by single-cell RNA sequencing (scRNA-seq), flow cytometry (FC) and immunohistochemistry (IHC). TG contains 5 types of non-neuronal cells: glial, fibroblasts, smooth muscle, endothelial and immune cells. There is agreement among publications for glial, fibroblasts, smooth muscle and endothelial cells. Based on gene profiles, glial cells were classified as Schwann cells and satellite glial cells (SGC). Mpz had dominant expression in Schwann cells, and Fabp7 is specific for SCG. Two types of Col1a2 + fibroblasts located throughout TG were distinguished using gene profiles. TG smooth muscle and endothelial cells representing blood vessels were detected with well recognized markers. Our study split reported single TG immune cell group into 3 types of macrophages and 4 types of neutrophils. Macrophages were located among neuronal bodies and nerve fibers, and were sub-grouped by unique transcriptomic profiles and using Ccr2 , Cx3cr1 and Iba1 as markers. S100a8 + neutrophils were located in dura surrounding TG and were sub-grouped by clustering and expressions of Csf3r , Ly6G, Ngp, Elane and Mpo . Overall, generated and summarized here dataset on non-neuronal TG cells could provide essential and fundamental information for studies on cell plasticity, interactomic network between neurons and non-neuronal cells and function during variety of pain conditions in the head and neck region.

20.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37577610

RESUMO

Chlamydia, an obligate intracellular bacterial pathogen, has a unique developmental cycle involving the differentiation of invading elementary bodies (EBs) to noninfectious reticulate bodies (RBs), replication of RBs, and redifferentiation of RBs into progeny EBs. Progression of this cycle is regulated by three sigma factors, which direct the RNA polymerase to their respective target gene promoters. We hypothesized that the Chlamydia-specific transcriptional regulator GrgA, previously shown to activate σ66 and σ28, plays an essential role in chlamydial development and growth. To test this hypothesis, we applied a novel genetic tool known as dependence on plasmid-mediated expression (DOPE) to create Chlamydia trachomatis with conditional GrgA-deficiency. We show that GrgA-deficient C. trachomatis RBs have a growth rate that is approximately half of the normal rate and fail to transition into progeny EBs. In addition, GrgA-deficient C. trachomatis fail to maintain its virulence plasmid. Results of RNA-seq analysis indicate that GrgA promotes RB growth by optimizing tRNA synthesis and expression of nutrient-acquisition genes, while it enables RB-to-EB conversion by facilitating the expression of a histone and outer membrane proteins required for EB morphogenesis. GrgA also regulates numerous other late genes required for host cell exit and subsequent EB invasion into host cells. Importantly, GrgA stimulates the expression of σ54, the third and last sigma factor, and its activator AtoC, and thereby indirectly upregulating the expression of σ54-dependent genes. In conclusion, our work demonstrates that GrgA is a master transcriptional regulator in Chlamydia and plays multiple essential roles in chlamydial pathogenicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...